

B. Roos

C. C. J. Roothaan

V. A. Fok

W. Heitler

W. Pauli

J. Čížek

Quantum Mechanics P.A.M. Dirac

Key Concepts, Methods and Machinery

M. S. Plesset

- lecture 2 -

N. Bohr

W. Kohn

J. C. Slater

W. Heisenberg

E. Schrödinger

M. Born

Six postulates in QM

On quantum mechanical state

The state of the system is described by the wavefunction $\Psi = \Psi(r,t)$, which depends on the coordinates of particle r at time t. Wavefunction are in general complex functions of real variables, thus $\Psi^*(r,t)$ denotes the complex conjugate of Ψ

$$P(r,t) = \Psi^*(r,t) \ \Psi(x,t) \ dV = |\Psi(r,t)|^2 \ dV$$
 (probabilistic interpretation)

II. On operator representation of mechanical quantities

The mechanical quantities that describe the particle (energy, momentum, angular momentum etc.) are represented by linear operators acting on a wavefunction

The total energy operator, Hamiltonian: $\hat{H} = \hat{T} + \hat{V}$

$$\hat{H} = \hat{T} + \hat{V}$$

The operator of the kinetic energy

Dirac notation:

$$\int \psi^* \hat{A} \phi d\tau \equiv \left\langle \psi \mid \hat{A} \mid \phi \right\rangle$$

Matrix element of the operator \hat{A}

$$\int \psi^* \phi d\tau \equiv \langle \psi \mid \phi \rangle$$

The operator of the potential energy

Scalar product of two wavefunctions

III. On time evolution of the state

The time evolution of the wave function is given by the equation:

$$\hat{H}\Psi(r,t) = i\hbar \frac{\partial \Psi(r,t)}{\partial t}$$

Six postulates in QM

IV. On interpretation of experimental measurements – not discussed here

V. Spin angular momentum (in non-relativistic formulation of QM)

$$\hat{S}^{2} |\alpha\rangle = s(s+1)\hbar^{2} |\alpha\rangle$$

$$\hat{S}_{z} |\alpha\rangle = m_{s}\hbar |\alpha\rangle; |\alpha\rangle \equiv |1/2\rangle$$

$$\hat{S}_{z} |\beta\rangle = m_{s}\hbar |\beta\rangle; |\beta\rangle \equiv |-1/2\rangle$$

where the spin magnetic quantum number $m_s = -s$, -s+1,...,s

VI. On the permutational symmetry

$$\Psi(1,2,...,i,...,j,...,N) = -\Psi(1,2,...,j,....,i,...,N)$$

-fermions (electrons, ...) – non-integer spin

$$\Psi(1,2,...,i,...,j,....,N) = \Psi(1,2,...,j,....,i,....,N)$$
 -bosons - integer spin

Probability density of finding two identical fermions in the same position and with the same spin coordinate equals to zero

Pauli exclusion principle

Quantum mechanics in Chemistry

- Let the **molecular system** under study contain atomic nuclei (q_{nuclei}), electrons ($q_{\text{electrons}}$) and possibly external fields.
- The key equation in quantum mechanics is the *nonrelativistic* Schrödinger equation:

$$\hat{H}(\mathbf{q},t)\Psi(\mathbf{q},t) = i\hbar \frac{\partial \Psi(\mathbf{q},t)}{\partial t}$$

• The vector **q** collects the spatial and spin coordinates of all particles (nuclei and electrons) in the molecular system.

* Postulate III.

The electronic Schrödinger equation

$$\hat{H}(\mathbf{q},t)\Psi(\mathbf{q},t) = i\hbar \frac{\partial \Psi(\mathbf{q},t)}{\partial t}$$

Let the Hamiltonian be time-independent

$$\Psi(\mathbf{q},t) = \Psi(\mathbf{q}) \exp\left(\frac{E_{\text{tot}}}{i\hbar}t\right); \qquad \hat{H}(\mathbf{q})\Psi(\mathbf{q}) = E_{\text{tot}}\Psi(\mathbf{q})$$

Born-Oppenheimer approximation

Schrödinger equation for stationary states

$$\Psi(\mathbf{q}) \approx \Psi(\mathbf{q}_{\text{nuclei}}) \Psi(\mathbf{q}_{\text{electrons}})$$

The electronic Schrödinger equation

The Hamiltonian (spin-dependent terms not considered)

Thus, the **numerical** solution of the **electronic** Schrödinger equation

$$\hat{H}_{electrons} \Psi(\mathbf{q}_{electrons}) = E \Psi(\mathbf{q}_{electrons})$$

through a favorite electronic-structure (quantum-chemical, QC) method.

QC methods are also devised to optimize the spatial configuration of nuclei, leading to E minimization - geometry optimization.

$$\hat{H}_{electrons} \Psi(\mathbf{q}_{electrons}) = E \Psi(\mathbf{q}_{electrons})$$

$$\frac{\left\langle \Psi \,|\, \hat{H}_{electrons} \,|\, \Psi \right\rangle}{\left\langle \Psi \,|\, \Psi \right\rangle} = E$$

$$if\langle\Psi \mid \Psi\rangle = 1$$

$$\sum_{i} \left\langle \Psi \mid \hat{h}_{one-electron,i} \mid \Psi \right\rangle + \sum_{i < j} \left\langle \Psi \mid \hat{h}_{two-electron,ij} \mid \Psi \right\rangle = E$$

The Many Electron Wavefunction

A form for the **electronic wavefunction** that satisfies the permutational antisymmetry (postulate VI) is the Slater determinant (SD) or a linear combination of SDs.

SD for two-electron system

(molecular orbital, MO)

spinorbital

$${}^{3}\Psi_{SD} = \frac{1}{\sqrt{2}} \begin{vmatrix} \psi_{1}(1)\alpha(1) & \psi_{2}(1)\alpha(1) \\ \psi_{1}(2)\alpha(2) & \psi_{2}(2)\alpha(2) \end{vmatrix} = \frac{1}{\sqrt{2}} \begin{vmatrix} \chi_{1}(1) & \chi_{2}(1) \\ \chi_{1}(2) & \chi_{2}(2) \end{vmatrix}$$

$$\text{spatial component of one-electron wave function}$$

$$\text{spin component of one-electron wave function}$$

$$\text{one-electron wave function}$$

SD for N-electron system

$$\Psi_{SD} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_1(1) & \chi_2(1) & \cdots & \chi_N(1) \\ \chi_1(2) & \chi_2(2) & \cdots & \chi_N(2) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_1(N) & \chi_2(N) & \cdots & \chi_N(N) \end{vmatrix}$$

Symmetry and spin-adapted SD or linear combination of SDs = configuration state function (CSF)

$$\hat{S}^2 \Psi_{CSF} = S(S+1)\hbar^2 \Psi_{CSF}$$

$$\hat{S}_z \Psi_{CSF} = M_s \hbar \Psi_{CSF}$$
 & $\hat{H}_{electrons} \Psi_{CSF} = E \Psi_{CSF}$

Molecular orbitals, as a building elements in SD or CSF, are constructed from atomic orbitals:

Hydrogen-like (one-electron) AOs are always of the form:

 $\varphi(r,\theta,\mathcal{G}) = R(r)Y_{lm}(\theta,\mathcal{G})$ where R(r) is the radial component that decays exponentially with increasing distance from the nucleus $e^{-\zeta r}$

Since it is impossible to obtain analytic solutions in systems with two or more electrons, the exponential behavior of the AOs – **Slater-type orbitals (STOs)** – were hence the first to be used. They are characterized by an exponential factor in the radial part.

$$\varphi(r,\theta,\vartheta) = P(r) e^{-\alpha r} Y_{lm}(\theta,\vartheta)$$

Drawback: difficulties associate with evaluating integrals that appear in the solution of electronic SE.

$$\varphi(r,\theta,\vartheta) = P(r) \frac{e^{-\alpha r^2}}{e^{-\alpha r^2}} Y_{lm}(\theta,\vartheta)$$

$$or$$

$$\varphi(\alpha,l,m,n;x,y,z) = Ne^{-\alpha r^2} x^l y^m z^n$$

(Gauss-type orbital GTO)

Drawback: qualitatively incorrect behavior at the nucleus and in the asymptotic limit

Correction

Linear combination of several GTOs

$$arphi_p^{CGTO} = \sum_a b_{ap} arphi_a^{GTO}$$
 contracted basis function primitive

Segmented contraction scheme: each GTO contributes to exactly one CGTO

General contraction scheme: each GTO can contribute to more than one CGTO

Balanced basis set - "More art than science"

Minimal basis set -(one STO or GTO or CGTO for one core / valence AO) \rightarrow Not very flexible

double-, triple-, quadruple n-tuple zeta basis sets DZ, TZ, QZ ...

More STO/GTO/CGTO functions describing one AO

DZ DZP TZ TZP TZPD QZVPD Different types of STO/GTO/CGTO functions, e.g.,

polarization functions (P):

e.g., for H atom add p functions for Fe atom add f functions

diffuse functions (D)

(with small α in exp(- α r²) – allowing to describe electron density at larger distances from nucleus.

suitable for anions, soft, large molecules, Rydberg states..

Infinite basis set – N electrons in ∞ MOs – it requires ∞ AOs (ideal but not realistic)

Effective core potential: if the core electrons (MOs, AOs) are replaced with an approximate pseudopotential

General strategies for solving the electronic SE

$$\Psi(\mathbf{q}_{electrons})_{guess} \longrightarrow \hat{H}_{electrons}\Psi = E\Psi \longrightarrow \underbrace{E[\Psi_{optimized}]}^{\Psi(\mathbf{q}_{electrons})_{optimized}}$$

Optimize Ψ and obtain E through a variation

$$\varepsilon\left[\Psi_{guess}\right] = \frac{\left\langle\Psi_{guess} \mid \hat{H}_{electrons} \mid \Psi_{guess}\right\rangle}{\left\langle\Psi_{guess} \mid \Psi_{guess}\right\rangle} \ge E\left[\Psi_{opt}\right] = \frac{\left\langle\Psi_{opt} \mid \hat{H}_{electrons} \mid \Psi_{opt}\right\rangle}{\left\langle\Psi_{opt} \mid \Psi_{opt}\right\rangle}$$

$$\varepsilon \left[\Psi(c_0, c_1, ..., c_p) \right] \qquad \frac{\partial \varepsilon(c_0, c_1, ..., c_p)}{\partial c_i} = 0$$

Optimize Ψ and obtain E through a perturbation

$$\hat{H}(\lambda) = \hat{H}^{(0)} + \lambda \hat{V}$$
 Let λ be a perturbational parameter $0 \le \lambda \le 1$

We seek the solution in the form:

$$\Psi(\lambda) = \Psi^{(0)} + \lambda \Psi^{(1)} + \lambda^2 \Psi^{(2)} + \dots$$

$$E(\lambda) = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \dots$$

Then, solving
$$\hat{H}(\lambda)\Psi(\lambda) = E(\lambda)\Psi(\lambda)$$

$$\psi_0^{(0)} + \psi_0^{(1)} + \psi_0^{(2)} + \dots = \psi_0$$

$$+ \dots = \psi_0$$

Family of standard Wave-Function Theories (WFT) – General overview Welcome to the ZOO

Semi-empirical methods (MNDO, AM1, PM3, etc.)

Ab initio methods

Multiconfigurational HF (MCSCF, CASSCF)

perturbational hierarchy (CASPT2, CASPT3)

excitation hierarchy (MR-CISD, MR-CCSD)

Hartree–Fock (HF-SCF)

> Correlation Energy

(usually <1% of the total energy)

Full CI

perturbational hierarchy (MP2, MP3, MP4, ...)

excitation hierarchy (CIS, CISD, CISDT, ...) (CCS, CCSD, CCSDT, ...)

Hartree-Fock (HF-SCF) method - the Gate to the realm of WFT

Equation from page 8:
$$E[\Psi] = \sum_{i} \left\langle \Psi \mid \hat{h}_{one-electron,i} \mid \Psi \right\rangle + \sum_{i < j} \left\langle \Psi \mid \hat{h}_{two-electron,ij} \mid \Psi \right\rangle$$

spinorbitals

if Ψ – 1 Slater determinant

$$E = \sum_{i} \left\langle \chi_{i} \mid \hat{h}_{one-electron,i} \mid \chi_{i} \right\rangle + \frac{1}{2} \sum_{i,j} \left\langle \chi_{i} \chi_{j} \mid \hat{h}_{two-electron,ij} \mid \chi_{i} \chi_{j} \right\rangle - \left\langle \chi_{i} \chi_{j} \mid \hat{h}_{two-electron,ij} \mid \chi_{j} \chi_{i} \right\rangle$$
one-electron integrals
two-electron Coulomb integrals

Condition: $\langle \chi_i \mid \chi_j \rangle = \delta_{ij}$

(inposed condition through the method of Lagrange multipliers) Fock equation $\hat{F}\chi_i=\mathcal{E}_i\chi_i \ \hat{F}=\hat{h}_{one-electron}+\hat{J}-\hat{K}$ Fock operator = Fockian

MOs → LCAO ansatz (and E minimized trough variational approach)

Fock matrix orbital energy of j-th MO in the basis of AOs AO-overlap matrix

Working Vector of LCAO coefficients

For j—th MO $\{\mathbf{F}(\mathbf{c}) - \varepsilon_i \mathbf{S}\} \mathbf{c}_i = 0 \longrightarrow \{\mathbf{F}'(\mathbf{c}) - \varepsilon_i \mathbf{1}\} \mathbf{c}_i' = 0$

In fact, **F** depends on **c**: see next page

 $=\frac{1}{2}\sum \left\langle \chi_{i}\mid \hat{J}-\hat{K}\mid \chi_{i}\right\rangle$

thus, equations has to be solved iteratively -> self-consistent field

Matrix element of the Fock matrix in the basis of AOs – explicit form (for the restricted Hartree-Fock method)

$$F_{pq} = \langle \varphi_p \mid \hat{T}_{el} \mid \varphi_q \rangle - \sum_{k}^{nuclei} \langle \varphi_p \mid \hat{V}_{e-n,k} \mid \varphi_q \rangle + \sum_{r,s} \underbrace{P_{rs}}_{r,s} \left[\langle \varphi_p \varphi_r \mid \hat{V}_{e-e} \mid \varphi_q \varphi_s \rangle - \frac{1}{2} \langle \varphi_p \varphi_r \mid \hat{V}_{e-e} \mid \varphi_s \varphi_q \rangle \right]$$

$$h_{pq} \qquad \qquad \text{density matrix} = 2 \sum_{i}^{occupied} c_{ri} c_{si} \qquad \text{This is what is optimized iteratively to get E minimized}$$

Hartree-Fock (HF-SCF) method - Computational Remarks

- Computational bottleneck
 - the evaluation of two-electron (four-center) integrals

$$\left\langle arphi_{p}arphi_{r}\leftert \hat{V}_{e-e}\leftert arphi_{q}arphi_{s}
ight
angle$$

- Approximations of such integrals through Cholesky decomposition (CD) or Resolution of Identity (RI-JK).
 - Restricted (closed-shell / open-shell HF)
 unrestricted HF spin-symmetry broken

$$\begin{aligned}
& \left\{ \mathbf{F}^{\alpha} - \varepsilon_{i}^{\alpha} \mathbf{S}^{\alpha} \right\} \mathbf{c}_{i}^{\alpha} = 0 \\
& \left\{ \mathbf{F}^{\beta} - \varepsilon_{i}^{\beta} \mathbf{S}^{\beta} \right\} \mathbf{c}_{i}^{\beta} = 0 \\
& \mathbf{F}^{\beta} \left(\mathbf{c}^{\beta}, \mathbf{c}^{\alpha} \right), \quad \mathbf{F}^{\beta} \left(\mathbf{c}^{\beta}, \mathbf{c}^{\alpha} \right)
\end{aligned}$$

Hartree–Fock (HF-SCF) method – Physical Remarks

- Each electron experiences the Coulombic repulsion
 of other electrons through their averaged field (a mean field)
 (the lack of dynamical correlation see later)
- Exchange interaction among electrons with the same spin orientation (Fermi correlation) – through the antisymmetric nature of the Slater determinant.
- One Slater determinant (SD) = one "electronic configuration" ("exact" wavefunction better expressed as a linear combination of many configurations - SDs).
- Only the ground-state wavefunction and its energy is solved by HF SCF.
 - (HF not for excited states and their energies)

Exact non-realistic solution with Full Configuration Interaction (FCI) in the infinite basis set

Slater determinant

$$\hat{H}_{electrons} \Psi_{FCI} = E_{exact} \Psi_{FCI}$$
 $\Psi_{FCI} = \sum_{k} C_{k} \Phi_{SD,k}$

Correlation energy: $E_{corr} = E_{exact} - E_{HF}$

$$\left\langle \Psi_{FCI} \mid \hat{H}_{electrons} \mid \Psi_{FCI} \right\rangle = E_{exact} \quad \text{(if } \left\langle \Psi_{FCI} \mid \Psi_{FCI} \right\rangle = 1\text{)}$$

$$\left\langle \sum_{k} C_{k} \Phi_{k} \mid \hat{H}_{electrons} \mid \sum_{l} C_{l} \Phi_{l} \right\rangle = E_{exact}$$

Slater-Condon rules → many integrals = 0

also Brillouin theorem:

$$\langle \Phi_{\text{HF-SCF}} \mid \hat{\mathbf{H}}_{\text{electrons}} \mid \Phi_i^a \rangle = 0$$

MOs (being orthonormal)

Exact non-realistic solution with Full Configuration Interaction (FCI) in the infinite basis set

Number of SD's:

(For 2n electrons in 2n orbitals)

(101 211 electrons III 211 orbitals)		
2n		
2	4	
4	<i>36</i>	
6	400	
8	4.900	
<i>10</i>	63.504	
<i>12</i>	853.776	
14	11.778.896	
16	165.636.896	
18	2.363.904.260	

Exact solution of electronic Schrödinger equation

Static versus dynamical correlation?

dynamical

Short range effects that arises as

$$r_{12} \rightarrow 0$$

Dynamical correlation is related to the Coulomb hole.

Static ("non-dynamical")

from configurational near-degeneracies or from deficiencies in Hartree-Fock orbitals

$$\Psi = C_1 \Phi_1 + C_2 \Phi_2$$

e.g., with

$$C_1 = 0.7$$

$$C_2 = 0.3$$

2C also devised for excited states

Single-reference post-HF approaches

(a portion of dynamical correlation included)

excitation hierarchy (CIS, CISD, CISDT, ...)

(CCS, CCSD, CCSDT, ...)

Full CI

Møller-Plesset perturbation theory of *n*-th order (MPn)

$$\hat{H}(\lambda)\Psi(\lambda) = E(\lambda)\Psi(\lambda) \qquad \hat{H}(\lambda) = \hat{H}^{(0)} + \lambda \hat{V}$$

$$\Psi(\lambda) = \Psi^{(0)} + \lambda \Psi^{(1)} + \lambda^2 \Psi^{(2)} + \dots \qquad \text{from HF-SCF}$$

$$E(\lambda) = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \dots$$

Truncation of perturbation

to second-order
$$E_{MP2} = E_{HF} + \sum_{k} \frac{\left| \left\langle \chi_{k}^{(0)} \mid \vec{V} \mid \chi_{HF} \right\rangle \right|^{2}}{E_{0}^{(0)} - E_{0}^{(k)}}$$

Truncated CI methods

$$\Psi = c_0 \Phi_{HF} + \sum_i \sum_a^{occ} \sum_i^{virt} c_i^a \Phi_i^a + \sum_{i < j}^{occ} \sum_{a < b}^{virt} c_{ij}^{ab} \Phi_{ij}^{ab} + \dots$$

Coupled-cluster methods (CC)

$$\Psi_{CC} = e^{T} \Phi_{HF}$$

$$e^{\hat{T}} \Phi_{HF} = \left[1 + (\hat{T}_{1} + \hat{T}_{2} + ...)\right] + \frac{1}{2} (\hat{T}_{1} + \hat{T}_{2} + ...)^{2} + ...] \Phi_{HF}$$

CCD:
$$\hat{T} = \hat{T}_2$$

$$e^{\hat{T}_2} \Phi_{HF} = (1 + \hat{T}_2 + \frac{1}{2} \hat{T}_2^2 + ...) \Phi_{HF}$$

$$\hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3 + \dots$$

spinorbitals

from HF-SCF

CCSD(T) – popular and often used as a golden standard method for single-reference systems (T) – triple excitations added as a perturbation

Formal scaling behavior of some single-reference QC methods

Scaling behavior	Method(s)	
N^4	HF	
N ⁵	MP2	
N^6	MP3, CISD, MP4SDQ, CCSD, QCISD	
N^7	MP4, CCSD(T), QCISD(T)	
N ⁸	MP5, CISDT, CCSDT	
N^9	MP6	
N ¹⁰	MP6, CISDTQ, CCSDTQ	

Multiconfigurational HF – MCSCF (CASSCF / RASSCF) (a portion of static correlation included)

$$\Psi_{MCSCF} = \sum_{k} C_{k} \Phi_{k} \qquad \Psi_{MCSCF}(C, c)$$

 Φ_k is a CSF arising from selected excitations within the active space

- if all possible excitations are allowed within the active space
 FCI on a limited set of orbitals CASSCF
- more general approach –**RASSCF** (active space divided into subspaces RAS1, RAS2, RAS3 within RAS1&3 selected excitations, within RAS2 FCI

,.	, , 0			
<i>N</i> –	2S+1	(n+1)	(n+1)	
$N_{CSF} = \frac{2S+1}{n+1}$	(N/2-S)	$\left(N/2+S+1\right)$	1)	

N= number of e^- in the active space

n = number of orbitals in the active space

S = molecular spin state

Weyl's formula

Current computational limit for CASSCF active space

~ 18-in-18

Example for S=2

N_{CSF}

10-in-8: 420

10-in-10: 12375

10-in-11: 45375

10-in-13: 390390

10-in-14: 975975

10-in-15: 2927925

Modern approaches allowing to extent the active spaces

- Density-matrix renormalization group technology

Note on the selection of an active space

"Sometimes trivial, sometimes more difficult, sometimes impossible"

B. Roos

Selection cannot be automatized and depends on the particular system /problem

Chemical insight is important ingredient in choosing a proper active space

Multi-reference wavefunction approaches (a portion of static and dynamic correlation included)

CASPT2 - PT2 on top of CASSCF

→ Popular for spectroscopy

RASPT2 – PT2 on top of RASSCF

DMRG-CASPT2 — PT2 on top of DMRG-CASSCF → Emerging method for "complex electronic structure" chemical transformations

MRCI(SD) – CISD on top of CASSCF

MRCC(SD) – CCSD on top of CASSCF

Higly accurate but computationally extremely demanding

→ Very small molecules

Density Functional Theory - DFT

To know the Hamiltonian, we need to know the number of electrons and the external potential, i.e. **the number of electrons, the nuclear charges, and their positions**. All of these can be determined from a knowledge of the density:

$$\int \rho(r)dr = N \qquad \frac{\partial}{\partial r_A} \overline{\rho}(r_A)|_{r_A=0} = -2Z_A \overline{\rho}(0)$$

where $\overline{\rho}$ is the spherical average of the density. The cusps of the density tell us where the nuclei are.

 ρ (r) therefore determines the Hamiltonian and hence everything about the system.

Density Functional Theory - DFT

The realm of DFT methods built on two fundamental theorems:

1st Hohenberg-Kohn theorem:

shows that electron density of an arbitrary molecular system (in an electronically non-degenerate ground state) in the absence of external electromagnetic fields determines unambiguously static external potential $v_{ext}(r) = \sum\nolimits_{k=1}^{nuclei} Z_k \left| r - R_k \right|^{-1}$

2nd Hohenberg-Kohn theorem:

proves that the correct ground state electron density minimizes the energy $E[\rho]$

The total energy is represented as a functional of density:

$$E[\rho] = V_{ne}[\rho] + T[\rho] + V_{ee}[\rho] = \int \rho(r) v_{ext}(r) dr + T[\rho] + V_{ee}[\rho]$$
nucleus-electron
attraction energy
of (interacting) electrons

Kohn-Sham Density Functional Theory (KS-DFT)

$$E[\rho] = \int \rho(r)v(r)dr + T[\rho] + V_{ee}[\rho]$$

Coulomb electron-electron interaction

$$E[\rho] = \int \rho(r) v_{ext}(r) dr + T_s[\rho] + J[\rho] + (T[\rho] - T_s[\rho]) + (V_{ee}[\rho] - J[\rho])$$

Kinetic energy of **representation** non-interacting electrons

$$\frac{1}{2}\int \frac{\rho(r')\rho(r)}{|r-r'|} dr'dr$$

$$E[\rho] = \int \rho(r) v_{ext}(r) dr + T_s[\rho] + J[\rho] + E_{xc}[\rho]$$

Exchange-Correlation (XC) Energy

Working Kohn-Sham Equation

The idea of considering the determinantal WF of **N** non-interacting electrons in **N** orbitals, then $T_s[\rho]$ is exactly given as:

$$T_{s}[\rho] = \sum_{i=1}^{N} \left\langle \chi_{i} \mid -\frac{\hbar^{2}}{2m_{e}} \Delta_{i} \mid \chi_{i} \right\rangle$$

Kohn-Sham spinorbital

$$T_{s}[\rho] = \sum_{i=1}^{N} \left\langle \chi_{i} \mid -\frac{\hbar^{2}}{2m_{e}} \Delta_{i} \mid \chi_{i} \right\rangle \qquad \textbf{\&} \qquad \text{fulfilling condition:} \qquad \rho = \sum_{i=1}^{N} \left\langle \chi_{i} \mid \chi_{i} \right\rangle$$

Real electron density

Then, one-electron KS equation:

$$\left(-\frac{\hbar^{2}}{2m_{e}}\Delta_{i}+v_{eff}(r)\right)\chi_{i}(r)=\varepsilon_{i}\chi_{i}(r)$$
 (Fock-like equations)

with:
$$v_{eff} = v_{ext}(r) + \int \frac{\rho(r')}{|r - r'|} dr' + \frac{v_{xc}(r)}{|r - r'|}$$

LCAO ansatz

Alpha-omega in KS-DFT – exact form unknown

Roothaan-like equations

Restricted / Unrestricted Kohn-Sham equations - as in HF $\rho = \rho_{\alpha} + \rho_{\beta}$

Most common of exchange-correlation potentials

- Local density approximation most popular way to do electronic structure calculations in solid state physics
- Generalized gradient approximation (GGA) xc potentials are functionals of electron density and its first spatial derivatives ("gradient-corrected LDA" functionals)
 PBE, BP86...
- Meta-GGA approximation extension of GGA. xc potentials are functionals of electron density, its first and second spatial derivatives and kinetic energy density

 TPSS....
- Hybrid exchange functionals a portion of exact exchange from HF theory is incorporated into xc potentials. Usually, GGA hybrid and GGA approach are combined.
 TPSSH, B3LYP, PBEO....
- **Hybrid exchange and hybrid correlation (double-hybrid) functionals -** essentially extension of hybrid-GGA, which uses MP2 correction to replace part of the semi-local GGA correlation.

 **B2PLYP...*

Limitations of standard KS DFT methods

Lack of long-range correlation (dispersion)

empirical corrections ~1/R6

B3LYP+D3

Incorrect long-range exchange behavior

e.g. incorrect energies of charge-transfer excitations (exchange should decay asymptotically as r_{12}^{-1} ; B3LYP : $0.2r_{12}^{-1}$)

CAM-B3LYP

Lack of static correlation energy

Generally lower sensitivity of DFT to multireference character is dependent on the amount of HF exchange included in the functional

Self-interaction error

SIE interpreted as the interaction of an electron with itself. While the diagonal exchange terms K_{ii} cancel exactly self-interaction Coulomb terms J_{ii} in HF, it is not valid for standard KS-DFT methods.

Lack of systematic improvability!!!!!

Some final notes on solving SE through WFT and DFT methods

For a given geometry – wavefunction optimization -> electronic energy *E* (single-point calculation)

On the other hand:

QC methods can be also used to optimize geometry – algorithms allowing to evaluate (first, second) derivatives of E with respect to the nuclear coordinates and to search crucial points on the potential energy surface

→ Minima & first-order stationary points (transition states) (geometry optimization)

Thus now, in principle, you are able to read the following sentence:

GGA-type PBE functional in combination with RI-J approximation and the DZP basis set was used for the geometry optimization, while CASPT2(10-in-8) approach combined with a larger basis set (e.g. TZVP) was employed for the final single-point energies.

APPENDIX

Properties as derivatives of the energy - Bonus

• Consider a molecule in an external electric field ε .

$$E(\varepsilon) = E(\varepsilon = 0) + \varepsilon \left. \frac{dE}{d\varepsilon} \right|_{\varepsilon = 0} + \frac{1}{2} \varepsilon^{2} \frac{d^{2}E}{d\varepsilon^{2}} \right|_{\varepsilon = 0} + \dots$$

- Dipole moment
$$(\mu)$$

$$\mu = -\frac{dE}{d\varepsilon}\Big|_{\varepsilon=0}$$

– Polarizability
$$(\alpha)$$

$$\alpha = -\frac{d^2 E}{d\varepsilon^2}\bigg|_{\varepsilon=0}$$

$$\beta = -\frac{d^3 E}{d\varepsilon^3}\bigg|_{\varepsilon=0}$$

$rac{dE}{darepsilon_{lpha}}$	dipole moment; in a similar way also multipole moments, electric field gradients, etc.
$rac{d^2 E}{darepsilon_lpha darepsilon_eta}$	polarizability
$rac{d^3E}{darepsilon_lpha darepsilon_eta darepsilon_\gamma}$	(first) hyperpolarizability
$\frac{dE}{dx_i}$	forces on nuclei
$\frac{d^2E}{dx_i dx_j}$	harmonic force constants; harmonic vibrational frequencies
$\frac{d^3E}{dx_i dx_j dx_k}$	cubic force constants; anharmonic corrections to distances and rotational constants
$\frac{d^4E}{dx_i dx_j dx_k dx_l}$	quartic force constants; anharmonic corrections to vibrational frequencies
$rac{d^2E}{dx_i darepsilon_lpha}$	dipole derivatives; infrared intensities
$\frac{d^3E}{dx_i d\varepsilon_{\alpha} d\varepsilon_{\beta}}$	polarizability derivatives; Raman intensities

```
d^2E
                 magnetizability
dB_{\alpha}dB_{\beta}
  d^2E
                 nuclear magnetic shielding tensor; relative NMR shifts
dI_{i_{\alpha}}dB_{\beta}
  d^2E
                 indirect spin-spin coupling constants
dI_{i_{\alpha}}dI_{j_{\beta}}
 d^2E
                 rotational g-tensor; rotational spectra in magnetic field
dB_{\alpha}dJ_{\beta}
  d^2E
                 nuclear spin-rotation tensor; fine structure in rotational
dI_{i_{\alpha}}dJ_{\beta}
                 spectra
  \frac{dE}{dS_{\alpha}}
                 spin density; hyperfine interaction constants
  d^2E
dS_{\alpha}dS_{\beta}
                 electronic g-tensor
                 and many more ...
```

Restricted Hartree–Fock (RHF) results for LiF

Post-Hartree-Fock for qualitative or quantitative reasons

Near-degeneracy problems of perturbation theory

Multireference perturbation theory applied to LiF

Unrestricted UCCSD(T) coupled-cluster calculations of the LiF ground state

- The UCCSD(T) results compare favorably with the full CI potential energy curve.
- The expectation value <S²>
 is zero for the (unprojected)
 UHF wavefunction at
 distances < 3 Å, but
 <S²> ≈ 1.0 at larger
 distances (> 3 Å).
- In this example, the spincontamination represents no real problem for the ground state energy.
- However, spin-contamination may make the UHF-based methods unsuitable for the study of a variety of molecular properties.

