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II.

Six postulates in QM

I. 

      dVtrdVtxtrtrP 2* |,|,,),(  (probabilistic interpretation)

III. 

The mechanical quantities that describe the particle (energy, momentum, angular momentum etc.)
are represented by linear operators acting on a wavefunction

On quantum mechanical state 

On time evolution of the state 

The operator of the potential energy

VTH ˆˆˆ 

The time evolution of the wave function 
is given by the equation:  

The state of the system is described by the wavefunction , which depends on the coordinates
of particle r at time t. Wavefunction are in general complex functions of real variables, thus               denotes
the complex conjugate of 

 tr,

 tr,*

 
 
t

tr
itrH






,
,ˆ 

The total energy operator, Hamiltonian:

On operator representation of mechanical quantities 

Dirac notation:

   |* d

Scalar product of two wavefunctions

   |ˆ|ˆ* AdA

Matrix element of the operator Â


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The operator of the kinetic energy



Six postulates in QM

IV. 

V. 

VI. 

On interpretation of experimental measurements – not discussed here 

Spin angular momentum (in non-relativistic formulation of QM) 

On the permutational symmetry

 22 )1(ˆ  ssS

where the spin magnetic quantum number ms = -s, -s+1,…,s 

Pauli exclusion principle

Probability density of finding two identical fermions 
in the same position and with the same spin coordinate equals to zero

Fermi correlation 
(Fermi hole)

   NijNji ,....,,....,,...,2,1,....,,....,,...,2,1  -fermions (electrons, …) – non-integer spin

   NijNji ,....,,....,,...,2,1,....,,....,,...,2,1  -bosons - integer spin

 sz mS ˆ

 sz mS ˆ

2/1

2/1

;

;
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• Let the molecular system under study contain atomic nuclei (qnuclei), electrons 
(qelectrons) and possibly external fields.

• The key equation in quantum mechanics is the nonrelativistic Schrödinger 
equation:

• The vector q collects the spatial and spin coordinates of all particles (nuclei 

and electrons) in the molecular system. 

   
 
t

t
ittH






,
,,ˆ

q
qq 

Quantum mechanics in Chemistry

*

* Postulate III. 
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         qqqqq 







 tot

tot ˆ       ; exp, EHt
i

E
t



Let the Hamiltonian be time-independent

   
 
t

t
ittH






,
,,ˆ

q
qq 

Born-Oppenheimer approximation

     electronsnuclei qqq 

The electronic Schrödinger equation

Schrödinger equation for stationary
states
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     electronsnuclei qqq 

 

     

   


















electronselectronselectrons

nucleitotnucleinuclei

electronsnuclei

ˆ

ˆ      

ˆˆˆ

qq

qq

q

EH

EET

HTH

electronic Schrödinger equation

The electronic Schrödinger equation

Nuclear-motion Schrödinger 
equation

The concept of potential energy hypersurfaces (of dimension 3N-6): 
the energy of a molecule as a function of its geometry
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The Hamiltonian (spin-dependent terms not considered)





lk kl
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ji iji k ik
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i
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Ze

mm
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22222

22
ˆ



electronsĤ

nucleiT̂

k,l – nuclei
i,j – electrons

   electronselectronselectrons EH qq ˆ

Thus, the numerical solution of the electronic Schrödinger equation

through a favorite electronic-structure (quantum-chemical, QC) method.

electronsT̂ neV 
ˆ

eeV 
ˆ

nnV 
ˆ

QC methods are also devised to optimize the spatial configuration of nuclei, leading to E minimization 
- geometry optimization.

Coulombic potential




 
ji

electrontwo

i

electrononeelectrons hhH ˆˆˆ

Due to this term 
– analytical solution 
of SE is unkonwn
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   electronselectronselectrons EH qq ˆ

E
Helectrons






|

|ˆ|

Ehh
ji

ijelectrontwo

i

ielectronone  


 |ˆ||ˆ| ,,

1| if
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The Many Electron Wavefunction

)2()2(
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


SD

A form for the electronic wavefunction that satisfies the permutational antisymmetry 
(postulate VI) is the Slater determinant (SD) or a linear combination of SDs.

SD for two-electron system 

spinorbital

spatial component 
of one-electron wave function
(molecular orbital, MO)

spin component of 
one-electron wave function

)()()(

)2()2()2(

)1()1()1(
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SD
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











SD for N-electron system 

Symmetry and spin-adapted SD or linear combination of SDs = configuration state function (CSF)

CSFCSF SSS  22 )1(ˆ 

& CSFCSFelectrons EH ˆ

CSFsCSFz MS  ˆ
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10

Molecular orbitals, as a building elements in SD or CSF, are constructed from atomic orbitals:

(Linear combination of atomic orbitals, LCAO)

Hydrogen-like (one-electron) AOs are always of the form:

    ,)(,, lmYrRr  where R(r) is the radial component that decays exponentially 

with increasing distance from the nucleus e-zr

Basis set

 


N

j aaii c
1


a



Since it is impossible to obtain analytic solutions in systems with two or more electrons, 
the exponential behavior of the AOs – Slater-type orbitals (STOs) – were hence the first 
to be used. They are characterized by an exponential factor in the radial part.

     ,)(,, lm

rYerPr 
     ,)(,,

2

lm

r YerPr 

STO

(Gauss-type orbital GTO)
Drawback: difficulties associate with evaluating 
integrals that appear in the solution of electronic SE.

Drawback: qualitatively incorrect behavior at the 
nucleus and in the asymptotic limit

Correction

Linear combination 
of several GTOs

contracted basis function primitive


a

GTO

aap

CGTO

p b 

Segmented contraction scheme: each GTO contributes to exactly one CGTO 

General contraction scheme: each GTO can contribute to more than one CGTO 

nmlr zyxNezyxnml
2

),,;,,,(  
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double-, triple-, quadruple
n-tuple zeta basis sets

Effective core potential:

Minimal basis set -
(one STO or GTO or CGTO 
for one core / valence AO)

Infinite basis set 
(ideal but not realistic)
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N electrons in ∞ MOs – it requires ∞ AOs-

polarization functions (P):
e.g., for H atom add p functions

for Fe atom add f functions 

diffuse functions (D)
(with small  in exp(-r2) –
allowing to describe electron 
density at larger distances from 
nucleus.
– suitable for anions, soft, large 
molecules, Rydberg states..

Balanced basis set - “More art than science”

DZ

DZP

TZ

TZP

TZPD

QZVPD

}Not very flexible

More STO/GTO/CGTO 
functions 
describing one AO

Different types of STO/GTO/CGTO
functions, e.g.,

if the core electrons (MOs, AOs) are replaced with an 
approximate pseudopotential 

DZ, TZ, QZ …



General strategies for solving the electronic SE

Optimize  and obtain E through a 
variation

 
guesselectronsq  EH electrons

ˆ
 

optimizedelectronsq

 optimizedE 

   
optopt

optelectronsopt

opt

guessguess

guesselectronsguess

guess

H
E

H











|

|ˆ|

|

|ˆ|
e

c

e(c)

 ),...,,( 10 Pccce 0
),..,,( 10 





i

P

c

ccce

Optimize  and obtain E through a 
perturbation

         EĤ

Let  be a perturbational parameter

  ...)2(2)1()0(  

  ...)2(2)1()0(  EEEE 

  VHH ˆˆˆ )0(  

0 ≤  ≤ 1
We seek the solution in the form:

Then, solving
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Semi-empirical methods
(MNDO, AM1, PM3, etc.)

Full CI

excitation hierarchy
(CIS, CISD, CISDT, …)

(CCS, CCSD, CCSDT, ...)

perturbational hierarchy
(MP2, MP3, MP4, …)

excitation hierarchy
(MR-CISD, MR-CCSD)

perturbational hierarchy
(CASPT2, CASPT3)

Multiconfigurational HF
(MCSCF, CASSCF)

Hartree–Fock
(HF-SCF)

Family of standard Wave-Function Theories (WFT) – General overview

Two contributions to correlation energy : static and dynamic correlation

Correlation 
Energy

(usually <1%
of the total energy)C

o
m

p
u

ta
ti

o
n

a
l C

o
st

Ab initio methods 
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Hartree–Fock (HF-SCF) method – the Gate to the realm of WFT 




 
ji

ijelectrontwo

i

ielectronone hhE |ˆ||ˆ|][ ,,

if 1 Slater determinant

 }  
ji

ijelectrontwojijielectrontwoji

i

ielectrononei hhhE
,

|ˆ||ˆ|
2

1
|ˆ| 

MOs  LCAO ansatz

two-electron Coulomb integrals

 
i

ii KJ  |ˆˆ|
2

1

 } 0)(  ii cScF e

KJhF electronone
ˆˆˆˆ  

Fock operator = Fockian
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Equation from page 8:

Fock matrix
in the basis of AOs AO-overlap matrix

Vector of LCAO coefficients
for j—th MO

Working
Roothaan
equation:

one-electron integrals

orbital energy of j-th MO In fact, F depends on c:

see next page

thus, equations has to be solved  
iteratively -> self-consistent field

(and E minimized trough variational approach)

 } 0)( 
ii c1cF e

two-electron exchange integrals

iiiF e ˆijji  |Condition:

spinorbitals

Fock equation

(inposed condition through 

the method of Lagrange multipliers)

,i ,ij ,ij
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 







 

sr

qseerpsqeerprs

nuclei

k

qknepqelppq VVPVTF
,

,
|ˆ|

2

1
|ˆ||ˆ||ˆ| 

Matrix element of the Fock matrix in the basis of AOs – explicit form (for the restricted Hartree-Fock method) 

density matrix = 
occupied

i

siricc2
AOs

This is what is optimized
iteratively to get E minimized

Compute and store all overlap, 
one-electron and two electron 
integrals

Guess initial density matrix P(0)

Construct and solve Roothaan
equation

Construct P from occupied MOs

Is new P(n) similar to P(n-1) ?
no

Replace P(n-1) with Pn

yesHF 
converged

Program flow: 

Choose a molecular geometry

Choose a basis set

 pqpq

AO

pq

qpHF FhPE  
2

1

pqh

for restricted Hartree-Fock method
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• Computational bottleneck  
– the evaluation of two-electron (four-center) integrals  

• Approximations of such integrals through 
Cholesky decomposition (CD) or Resolution of Identity (RI-JK).

• Restricted (closed-shell / open-shell HF) 
unrestricted HF – spin-symmetry broken

 } 0  e ii cSF

 } 0  e ii cSF

sqeerp V  |ˆ| 

   
ccFccF ,;, RHFRHF SSS  )1(2  UHFUHF SSS  )1(2 

“Spin contamination”

Hartree–Fock (HF-SCF) method – Computational Remarks 

22



• Exchange interaction among electrons with the same 
spin orientation (Fermi correlation) – through the antisymmetric
nature of the Slater determinant.

• One Slater determinant (SD) = one “electronic configuration”
(“exact” wavefunction better expressed as 

a linear combination of many configurations - SDs). 

18

• Each electron experiences the Coulombic repulsion 
of other electrons through their averaged field (a mean field)
(the lack of dynamical correlation – see later)

Hartree–Fock (HF-SCF) method – Physical Remarks 

• Only the ground-state wavefunction and its energy is solved 
by HF SCF. 
(HF not for excited states and their energies)
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kSD

k

kFCI C , 

i

i+1

i+2

i+3

i+4 Correlation energy: Ecorr = Eexact - EHF

FCIexactFCIelectrons EH ˆ

exactFCIelectronsFCI EH  |ˆ| (if 1|  FCIFCI ) 

exact

l

llelectrons

k

kk ECHC   |ˆ|

Slater-Condon rules many integrals = 0

Slater
determinant

MOs
(being orthonormal)

also Brillouin theorem:

0|Ĥ| electronsSCFHF  

a

i

∞

1

Exact non-realistic solution with
Full Configuration Interaction (FCI) in the infinite basis set
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1   2   3   …

n/2



number of determinants

Exact solution of electronic 

Schrödinger equation 

Exact non-realistic solution with
Full Configuration Interaction (FCI) in the infinite basis set

Number of SD’s:
(For 2n electrons in 2n orbitals)

2n
2
4
6
8
10
12
14
16
18

4
36
400
4.900
63.504
853.776
11.778.896
165.636.896
2.363.904.260





Static versus dynamical correlation?

r12  0

21

dynamical
Static (“non-dynamical”)• Short range effects that arises as 

• from configurational near-degeneracies
or from deficiencies in Hartree-Fock orbitals 

1 2

2211  CC

7.01 C

3.02 C

e.g., with

He…He 

Interaction energy

Basis set: 4s3p2d 

Widmark ANO

E / Eh
Hartree

-Fock Dynamical 

correlation

rHe-He /Å

CCSD

Dynamical correlation is
related to the Coulomb hole. 



Single-reference post-HF approaches
(a portion of dynamical correlation included)

22

Full CI

Hartree–Fock
(HF-SCF)

excitation hierarchy
(CIS, CISD, CISDT, …)

(CCS, CCSD, CCSDT, ...)

perturbational 
hierarchy

(MP2, MP3, MP4, …)

Coupled-cluster methods (CC)

CCSD(T) – popular and often used as a golden standard method
for single-reference systems (T) – triple excitations added as a perturbation

Q
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Møller-Plesset perturbation theory of n-th order (MPn)

...0  
 

occ

ji

virt
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i
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a

a

i

a

iHF ccc

Truncated CI methods

CIS CISD

         EĤ

MP2:

  VHH ˆˆˆ )0(  

  ...)2(2)1()0(  

  ...)2(2)1()0(  EEEE 

Truncation of perturbation
to second-order

spinorbitals 
from HF-SCF

from HF-SCF

HF

T

CC e 
ˆ

Cluster operator

...ˆˆˆˆ
321  TTTT

  HFHF

T TTTTe  ..]..)ˆˆ(
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Formal scaling behavior of some single-reference QC methods

N – the number of basis functions 

N4

N5

N6

N7

N8

N9

N10

Scaling behavior

HF

Method(s)

MP2

MP3, CISD, MP4SDQ, CCSD, QCISD

MP4, CCSD(T), QCISD(T)

MP6

MP5, CISDT, CCSDT

MP6, CISDTQ, CCSDTQ



Multiconfigurational HF – MCSCF (CASSCF / RASSCF)
(a portion of static correlation included)































12/

1

2/

1

1

12

SN

n

SN

n

n

S
NCSF

10-in-8: 420
10-in-10: 12375
10-in-11: 45375
10-in-13: 390390
10-in-14: 975975
10-in-15: 2927925

NCSF

Example for S=2

k is a CSF arising from selected excitations within the active space

k

k

kMCSCF C  

N= number of e- in the active space
n = number of orbitals in the active space
S = molecular spin state

Weyl’s formula
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• if all possible excitations are allowed within the active space

-> FCI on a limited set of orbitals  CASSCF

Current computational limit for CASSCF active space 
~ 18-in-18

larger active spaces within DMRG-CASSCF (e.g., 30-in-30)

Modern approaches allowing to extent the active spaces
– Density-matrix renormalization group technology

• more general approach –RASSCF (active space divided into subspaces –
RAS1, RAS2, RAS3 – within RAS1&3 – selected excitations, within RAS2 - FCI 

 cCMCSCF ,
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Note on the selection of an active space

“Sometimes trivial, sometimes more difficult,
sometimes impossible”

B. Roos

Selection cannot be automatized 
and depends on the particular system /problem

Chemical insight is important ingredient
in choosing a proper active space
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Multi-reference wavefunction approaches

CASPT2 – PT2 on top of CASSCF  

DMRG-CASPT2 – PT2 on top of DMRG-CASSCF

MRCI(SD) – CISD on top of CASSCF

MRCC(SD) – CCSD on top of CASSCF

RASPT2 – PT2 on top of RASSCF

} Higly accurate but computationally 
extremely demanding
 Very small molecules

 Popular for spectroscopy

 Emerging method for
“complex electronic      

structure” chemical 
transformations

(a portion of static and dynamic correlation included)
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Density Functional Theory - DFT

To know the Hamiltonian, we need to know the number of
electrons and the external potential, i.e. the number of electrons,
the nuclear charges, and their positions. All of these can be
determined from a knowledge of the density:

where is the spherical average of the density. The cusps of the
density tell us where the nuclei are.

r(r) therefore determines the Hamiltonian
and hence everything about the system.

Ndrr  )(r    02| 0 rr ArA

A

Zr
r A







r



Density Functional Theory - DFT

             rrrrrrr eeexteene VTdrrvrVTVE )()(

The total energy is represented as a functional of  density:

1st Hohenberg-Kohn theorem:

2nd Hohenberg-Kohn theorem:

proves that the correct ground state electron density minimizes the energy E[r]

shows that electron density of an arbitrary molecular system (in an electronically non-
degenerate ground state) in the absence of external electromagnetic fields determines
unambiguously static external potential
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nucleus-electron 
attraction energy

kinetic energy
of (interacting) electrons

electron-electron
interaction energy

The realm of DFT methods built on two fundamental theorems:

 




nuclei

k kkext RrZrv
1

1
)(



29

       rrrr eeVTdrrvrE )()(

                 rrrrrrrr JVTTJTdrrvrE eessext )()(

       rrrrr   xcsext EJTdrrvrE )()(

Kinetic energy of 
non-interacting electrons

Kohn-Sham Density Functional Theory (KS-DFT)

Coulomb electron-electron interaction

Exchange-Correlation (XC) Energy 
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Working Kohn-Sham Equation
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&

The idea of considering the determinantal WF
of N non-interacting electrons in N orbitals, then Ts[r] is exactly given as:

Kohn-Sham spinorbital  Real electron density

Then, one-electron KS equation:

with:
 

)('
'

'
)( rvdr
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r
rvv xcexteff 


 

r

(Fock-like 
equations)

LCAO ansatz

Roothaan-like equations

Restricted / Unrestricted Kohn-Sham equations  - as in HF

Alpha-omega in KS-DFT –
exact form unknown

 rrr 
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Most common of exchange-correlation potentials

• Local density approximation – most popular way  to do electronic 
structure calculations in solid state physics

• Generalized gradient approximation (GGA) – xc potentials are 
functionals of electron density and its first spatial derivatives (“gradient-
corrected LDA” functionals)

• Meta-GGA approximation – extension of GGA. xc potentials are 
functionals of electron density, its first and second spatial derivatives and 
kinetic energy density

• Hybrid exchange functionals – a portion of exact exchange from HF 

theory is incorporated into xc potentials. Usually, GGA hybrid and GGA 
approach are combined.

• Hybrid exchange and hybrid correlation (double-hybrid) functionals -

essentially extension of hybrid-GGA, which uses MP2 correction to

replace part of the semi-local GGA correlation.

PBE, BP86…

TPSS….

TPSSH, B3LYP, PBE0….

B2PLYP…



Limitations of standard KS DFT methods

• Lack of long-range correlation (dispersion)

empirical corrections ~1/R6 

• Incorrect long-range exchange behavior 

e.g. incorrect energies of charge-transfer excitations 

(exchange should decay asymptotically as r12
-1; B3LYP : 0.2r12

-1)

• Lack of static correlation energy

Generally lower sensitivity of DFT to multireference character is dependent

on the amount of HF exchange included in the functional

• Self-interaction error

• Lack of systematic improvability!!!!!

While the diagonal exchange terms Kii cancel exactly self-interaction Coulomb terms Jii

in HF, it is not valid for standard KS-DFT methods. 

SIE interpreted as the interaction of an electron with itself.
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B3LYP+D3

CAM-B3LYP
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Thus now, in principle, you are able to read the following sentence:

GGA-type PBE functional in combination with RI-J approximation and the DZP 
basis set was used for the geometry optimization, while CASPT2(10-in-8) 
approach combined with a larger basis set (e.g. TZVP) was employed for the 
final single-point energies. 

Some final notes on solving SE through WFT and DFT methods

For a given geometry – wavefunction optimization -> electronic energy E

(single-point calculation)

On the other hand:

QC methods can be also used to optimize geometry – algorithms allowing to 
evaluate (first, second) derivatives of E with respect to the nuclear coordinates 
and to search crucial points on the potential energy surface

 Minima & first-order stationary points (transition states) 

(geometry optimization)



34

APPENDIX
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Properties as derivatives of the energy -
Bonus

• Consider a molecule in an external electric field e.

– Dipole moment ()

– Polarizability ()

– First hyperpolarizability (ß)
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dipole moment; in a similar way also multipole moments, 
electric field gradients, etc.

polarizability

(first) hyperpolarizability

forces on nuclei

harmonic force constants; harmonic vibrational frequencies

cubic force constants; anharmonic corrections to distances 
and rotational constants

quartic force constants; anharmonic corrections to 
vibrational frequencies

dipole derivatives; infrared intensities

polarizability derivatives; Raman intensities
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magnetizability

nuclear magnetic shielding tensor; relative NMR shifts

indirect spin-spin coupling constants

rotational g-tensor; rotational spectra in magnetic field

nuclear spin-rotation tensor; fine structure in rotational 
spectra

spin density; hyperfine interaction constants

electronic g-tensor

and many more ...
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Restricted Hartree–Fock (RHF) results for LiF

rLi-F /Å

RHF(Li+ + F–)

LiF ground state

Comparison of restricted Hartree-Fock results 
with full CI

Basis set: Ahlrichs pVDZE/Eh

ROHF(Li + F)

FCI(Li + F)

De

For LiF, the Hartree-
Fock method is quite 
useful for calculations 
around the equilibrium, 
although the binding energy 
is too low by 26%.

But the RHF model dissociates
incorrectly into Li+ and F.

HartreeFock Error

re / Å 1.57 0.6 %

e / cm1 991 +2.5 %

e / D 6.49 +3.9 %

e / DÅ1 4.14 +4.6 %

De / kJ mol1 352 26 %
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rLi-F /Å

Li + F

Li+ + F–

singlet ground state
singlet excited state

LiF molecule

State-averaged-CASSCF+internally-

contracted-MRCI results 

Basis set: Ahlrichs pVDZE/Eh

Near-degeneracy effects

Ground-state equilibrium 
properties

Why do we want to go beyond

the Hartree-Fock description?

• First, we may wish to improve
the accuracy of the computed
energy and other properties.

• Second, we are dealing with a
situation where the Hartree-
Fock model is a very poor 
zeroth-order approximation
of the wavefunction.

Post-Hartree-Fock for qualitative or quantitative reasons
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Near-degeneracy problems of perturbation theory

rLi-F /Å

LiF ground state 

Closed-shell coupled-cluster RHF/CCSD(T) results

Basis set: Ahlrichs pVDZ

E/Eh

CCSD(T)

MP2

MP4

FCI

B-CCD(T)

The CCSD(T) triples correction 
becomes very negative for 

distances > 3 Å. 

The CCSD(T) method breaks down. 

The MP4(SDTQ) energy also shows 
this behavior, but only at a much 

longer distance (> 6 Å).
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Multireference perturbation theory applied to LiF

rLi-F /Å

LiF ground state

(2,2)CASPT2 results (MOLPRO, g=4)

Basis set: Ahlrichs pVDZ

E/Eh

(2,2)CASSCF

(2,2)CASPT2

RHF

FCI

non-dynamical 
correlation

dynamical 
correlation
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Unrestricted UCCSD(T) coupled-cluster calculations                            
of the LiF ground state

rLi-F /Å

LiF ground state

Unrestricted coupled-cluster UCCSD(T) results

Basis set: Ahlrichs pVDZE/Eh

ROHF(Li + F)
UHF

RHF

UCCSD(T)

FCI

 The UCCSD(T) results
compare favorably with the 
full CI potential energy curve. 

 The expectation value <S2> 
is zero for the (unprojected) 
UHF wavefunction at 
distances < 3 Å,  but 
<S2>  1.0 at larger 
distances  (> 3 Å).

 In this example, the spin-
contamination represents
no real problem for the 
ground state energy.

 However, spin-contamination
may make the UHF-based  
methods unsuitable for the 
study of a variety of molecular 
properties.


